UN MODELE DE GEOMETRIE NON EUCLIDIENNE

Ibrahim Keita
[Ceci est une version allégée]

A mon maitre, le professeur Jean Martinet de [’Université Louis Pasteur de Strasbourg.

«Les mathématiques sont la poésie des sciences.» Léopold Sédar Senghor

La géométrie euclidienne, a laquelle tout le monde a été initié au collége puis au lycée, repose sur un ensemble de
définitions appelées postulats (axiomes en langage moderne). Le plus célébre des axiomes est celui des parall¢les,
encore appelé postulat d'Euclide, qui dit :

"Par un point situé hors d'une droite, on ne peut mener a cette droite qu'une paralléle et une seule".

Jusqu'au 18e siecle la communauté mathématique s'est posée la question de savoir si cet axiome pouvait étre prouvé a
partir des autres. En vain.

I. LE DISQUE DE POINCARE

1. Définition

Au début du 19e siécle, Carl Friedrich Gauss a trouvé la réponse: l'axiome des paralléles était indémontrable et on
pouvait construire des géométries parfaitement cohérentes en le refusant. Mais Gauss, le prince des mathématiciens ne
publia pas ses résultats par peur des critiques et réticences des esprits traditionalistes. Il écrivit a Bessel en 1829:

«J'appréhende les clameurs des béotiens, si je voulais exprimer complétement mes vues ».

Ce sont Nikolai Lobatchevski en 1829 avec "Géométrie imaginaire” et Janos Bolyai vers 1830 avec "La science
absolue de l'espace” qui ont publié, de fagon indépendante, deux modéles de géométrie non euclidienne. Dans 1'une on
peut mener plusieurs paralléles a une droite donnée (géométrie hyperbolique ou géométrie Lobatchevski); dans l'autre
aucune (géométrie elliptique).

A la fin du 19e siecle, Henri Poincaré a étudié et perfectionné un modele élégant de la géométrie Lobatchevski qu'on a
fini par appeler le disque de Poincaré. Nous essaierons ici d'en donner une idée avec différents problémes dans le
triangle: angles, théoréme de Pythagore, hauteurs, médiatrices, médianes,...

Le disque de Poincaré est le disque unit¢ & qui est l'univers entier, et sa frontiére c'est-a-dire le cercle unité I est la
frontiére infinie. Les points demeurent des points mais une droite euclidienne devient un arc de cercle que nous
appellerons géodésique. Ainsi la géodésique {AB} est l'arc de cercle IABJ, avec I et J sur T et les deux cercles sont
orthogonaux en I et J (figures suivantes).

Tout se passe dans &, tout ce qui est extérieur & & n'existe pas et est la uniquement pour comprendre les
constructions géométriques.



Il y a des instruments géométriques comme 1'inversion qui vont beaucoup intervenir par la suite. Il convient donc de les
rappeler.

2. Préliminaires sur l'inversion et construction de {AB}

a. L'inversion de centre o et de puissance k associe a tout point M
- e . 7 k —
différent de o le point M' tel que oM’ = o oM .

Tous les points du cercle de centre o et de rayon vk , sont invariants.

b. L'inversion i de centre o (centre de I') et de puissance 1 a pour
points invariants tous les points du cercle unité I'. Son expression
complexe est z'=1/(zZ).z ; donc:

i(z)=1/z

c. Pour construire I'image A' d'un point A du disque unité par l'inversion 7 ,
on trace [0A) et sa perpendiculaire en A qui coupe I" en B. La perpendiculaire en B a (oB) coupe (0A) en A'.

d. Pour construire la géodésique {AB}, on peut remarquer que
l'inversion i de points fixes le cercle I' (unité) laisse invariants les
points I et J et conserve l'orthogonalité. Elle laisse donc
globalement invariant la géodésique {AB}.

11 suffit alors de construire I'image A' de A par i et ensuite le
cercle ABA'.

e. Lemme. Pour tout point A de &, il y a une inversion ix qui
envoie A en o centre de I'.

(Et méme plus, il existe une inversion i,z échangeant A et B
quelconques).

p: Sil'inversion i de centre o et de cercle I envoie A en A', on a:
oA .0A=1.
Donc: 0A'.(0A'+A’A) =1
et  0A.0A —AAAo=1
dou AA.A0=0A?—1
c'est-a-dire que o est I'image de A par l'inversion i, de centre A'

et de puissance 04'> — 1 .
Son expression s'obtient en remarquant:
(z'—d).(z-ad)=dd -1

Puisque a'= 1/a , aprés développement et calcul de z' en fonction de z et a , on obtient:

a aa aa
oLy 1
Z’(Z——)Zz:z—l
a a
d'ou:
1._
=z—1
a




« Défiez-vous des ensorcellements et des attraits diaboliques de la géométrie. » Fénelon

3. Axiome des paralléles

En géométrie hyperbolique, par un point C pris hors d'une géodésique {AB}, il passe une infinité de géodésiques ne
rencontrant pas {AB}.

Ce sont toutes les géodésiques {CM}, avec M sur l'arc JL ou l'arc KI.
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« Par un point extérieur a une droite donnée, il passe deux droites paralléles a cette droite. » Nicolai Lobatchevski
Ce sont les géodésiques {CI} et {CJ} (elles rencontrent {AB} a l'infini).

4. Orthogonalité
Par un point A donné on peut mener a une géodésique {BC} donnée une perpendiculaire et une seule.

Al

La géodésique issue de A et orthogonale a
{BC} est globalement invariante par les
inversions de cercle fixe I' et de cercle fixe
{BC} et passe donc par les images A' et A"
de A par ces inversions.



II. POPRIETES METRIQUES DU TRIANGLE DANS LE DISQUE DE POINCARE

« Les mathématiques, considérées a leur juste mesure, possédent non seulement la vérité, mais la beauté supréme, une beauté
froide et austére, comme celle d'une sculpture, sans référence a une partie de notre fragile nature, sans les effets d'illusion
magnifiques de la peinture ou de la musique, pourtant pur et sublime, capable d'une perfection sévere telle que seulement les
plus grands arts peuvent la montrer. L'esprit vrai du plaisir, l'exaltation, l'impression d'étre plus qu'un homme, qui est la
pierre de touche de l'excellence la plus élevée, doit étre trouvé dans les mathématiques aussi stirement que la poésie. »
Bertrand Russel

Le triangle {ABC} est défini par ses sommets A, B, C et ses cotés qui sont les géodésiques {AB}, {AC} et {BC}.

1. Somme des angles

De facon générale, Lobatchevski a montré, a 1’aide d’une dichotomie d’angles, que

« Dans tout triangle rectiligne, la somme des trois angles ne peut surpasser deux angles droits. »

tA!

a) p: Voici une preuve élémentaire. |
Si {ABC} est un triangle non euclidien dans le disque de Poincaré, [ (@)
l'inversion iz amenant B en o permet d'avoir la figure ci-contre ou B “ ‘
esten o, les géodésiques {0A} et {oC} ¢tant de vraies droites. .
Puisque {AC} passe par A' et C' images de A et C par l'inversion i, on a “‘
0A.0A =1> 0; donc o est extérieur a {AC}.
Comme 0A’ > 0A et oC' > oC , la corde [AC] est intérieure a {AC} ;
donc le segment géodésique {AC} est intérieur au triangle euclidien
AoC.
Si on appelle o, B,y les anglesen A, B, C du triangle non euclidien
{ABC},ona: a <0AC , y<oCA et p=AoC
d'ot a+ B +y < 0AC+ AoC + oCA .
Comme la somme des angles du triangle euclidien AoC vaut m, on a
prouveé que

a+B+y<m

Dans le cas général, on peut affirmer:

b) La somme des angles du triangle non euclidien {ABC} est strictement inférieure a 180°.




2. Aire d'un triangle non euclidien

a) On appelle triangle idéal un triangle non euclidien dont les trois sommets sont a
l'infini. Par un calcul intégral, non immédiatement trivial (voir Annexe) on
démontre que l'aire non euclidienne de tout triangle idéal est finie (on va a l'infini,
mais les angles aux sommets tendent vers 0 donc les portions d'aire vers les
sommets deviennent "négligeables") et vaut 7.

Si {ABC} est un triangle idéal, son aire non euclidienne notée .23(ABC) vaut
donc 94(ABC)=m.

On en déduit alors une jolie démonstration de ce qu'on appelle le théoréme de B
Gauss-Bonnet.

b) Si {ABC} est un triangle semi-idéal en A (A dans & ,BetC a
l'infini) avec I'angle en A valant a, son aire non euclidienne sera notée
2 (ABC) ou .o5(a).

Soit un triangle {ABC} semi-idéal en A avec un angle a;. Pour un
point quelconque D a I'infini (extérieur a l'arc intérieur BC ), on a:
25(ABC) +.94(ACD) = .2(ABD) +.94(BCD) = 95(ABD) + © (1)
Autrement dit, si o, et a, sont les angles en A dans les triangles non
euclidiens {ABC} et {ACD}, on a:
() + (o) = A(top) + (2)

¢) Soit maintenant la fonction f définie par:
S () =m-(a)
on obtient avec la relation (2) :
Sl +a)= flo)+ fo)  (3).
Mais une fonction f* vérifiant la relation (3) est
forcément linéaire; c'est-a-dire que
f(o)=ko avec k constante réelle.
Comme f(n)=kn=n-5Mmn)=n-0=7,
on en déduit que f(a) = ; donc:
() =T -a 4).

d) Si {ABC} est un vrai triangle de &, en

prolongeant ses cotés a l'infini on obtient

I'hexagone idéal IJKLMN dont ['aire vaut:

AVKLMN)=2(n-a) + 2(n-p) + 2(m-y) -2.24ABC)
D'autre part, on peut calculer l'aire de [JKLMN

en le partitionnant en quatre triangles idéaux

(a faire); son aire vaut donc:

ATJKLMN) =4n .

De ces deux expressions de 2AIJKLMN), on tire

AABC) =7 — (a + B +7)]
(formule de Gauss)
ou bien

“la+ B +y=m—4ABC)|
reliant la somme des angles d'un tringle {ABC}
non euclidien a son aire.




La nostalgie de Pythagore...

2. Le théoréme de Pythagore

Dans tout triangle {ABC} rectangle en A
|ch(d(4, B)).ch(d(4,C)) = ch(d(B, C))|




III. POINTS REMARQUABLES DU TRIANGLE DANS LE DISQUE DE POINCARE

«Le mathématicien est un oiselier capturant dans une voliere des oiseaux aux brillantes couleurs.»  Platon

1. Hauteurs
Une hauteur est une géodésique passant par un sommet et orthogonale au coté opposé.

a) Les hauteurs du triangle {ABC} ne sont pas
toujours concourantes!

b) Quand deux hauteurs du triangle { ABC} se coupent, la troisiéme passe par ce méme point H appelé orthocentre de
{ABC}.




«C’est une erreur de croire que la rigueur dans une démonstration est ['ennemie de la simplicité... L effort méme de la
rigueur nous force a découvrir les méthodes de démonstration les plus simples.» ~ David Hilbert

On envoie A en o par l'inversion i, .
Quand A est en o centre de 7, on a alors la configuration ci-dessous ou {oB} et {oC} sont des droites.

0, H et F alignés entraine que les géodésiques {oH} et {BC} sont orthogonales, ce qui acheve la démonstration.




«L'important et le beau de la géométrie c'est, par sa pureté, qu'elle est un instrument de pensée...» Paul Valéry

2. Cercle circonscrit

En métrique non euclidienne, les cercles sont de vrais cercles mais leur centre (n'est pas le centre euclidien) est le point limite
du faisceau engendré par un tel cercle et le cercle frontiére et appartenant au disque! Le centre non euclidien est le centre
euclidien si et seulement si il se trouve en o centre de & .

a) Nous conviendrons que le cercle
circonscrit au triangle {ABC} n'existe pas
si il n'est pas entiérement contenu dans &,
comme ici.

NN
sh \
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b) Quand le triangle {ABC} a un
cercle circonscrit entiérement contenu
dans &, le centre non euclidien de ce
cercle circonscrit est O le point limite
du faisceau(cercle(ABC), I') contenu
dans 2.
La médiatrice du segment {BC} est la
géodésique orthogonale a ce segment en
son milieu hyperbolique.
D’aprés le théoréme de Pythagore
hyperbolique, la  médiatrice  est
I’ensemble des points équidistants des
extrémités d’un segment.

On a la propriété :

Les médiatrices d'un triangle euclidien,
si elles existent, sont concourantes en O
centre (non euclidien) du cercle
circonscrit a ce triangle.







« Si l'esprit d'un homme s'égare, faites-lui étudier les mathématiques car dans les démonstrations, pour peu qu'il s'écarte, il

sera obligé de recommencer. » Francis Bacon

3. Médianes

Quand le triangle {ABC} a un cercle circonscrit dans & , les milieux non euclidiens des cotés existent et on peut définir les
médianes: géodésique joignant un sommet au milieu non euclidien du coté opposé.
On a alors:

Les médianes sont concourantes en G centre de gravité non euclidien du triangle {ABC}.
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« La probabilité, c’est du bon sens réduit a des calculs.» Pierre-Simon Laplace

p:

« Cette marge est trop étroite pour

contenir ma merveilleuse preuve. »
Abraham de Blagat

La  démonstration  peut,  trés
probablement, se faire en amenant le
centre du cercle circonscrit au triangle
{ABC} en o. Les milieux des cotés
sont alors simplifiés (milieu euclidien
de D’arc) et on obtient facilement
I'équation de toute médiane.

On a alors la configuration ci-contre
ou il faut prouver que le point
d'intersection G des médianes {BB;}
et {CC,} appartient aussi a la troisiéme
médiane {AA;}; ou bien montrer que
la géodésique {AG} passe par le
milieu A,

Mais j’ai trouvé une autre voie...

« I am a way. Whoever comes in by me will find pasture.»



Annexe . CALCUL DE L'AIRE D'UN TRIANGLE IDEAL

1. Le demi-plan de Poincaré
a) On appelle demi-plan de Poincaré 7 le plan complexe limité aux points a ordonnée positive muni d'une métrique non
euclidienne et ou les droites sont des demi-cercles centrés sur Ox.
Z={z € C tel que Im z > 0}
Dans ce mode¢le, les points sur Ox et les points & ordonnée infinie sont a I'infini.

b) L'homographie f(z) = T transforme le disque de Poincaré & en demi-plan de Poincaré /77
p: fest continue sur & et f(O) =i € 7.
Et si on prend un point e de la frontiére de &, on a
i\ _ ef+1 . elf/24o-10/2 _ . 2c0os(8/2) _ . . o
f(e ) =l = Lo = Yo 02 cotg(0/2) appartienta R frontiére de 7.

¢) Par f, qui conserve la mesure de l'aire, un triangle idéal quelconque (on peut prendre A[1]) du disque de Poincaré & est
transformé en un triangle idéal du demi-plan de Poincaré /7.

En prenant l'origine de /7 au milieu de [BC], on obtient l'intérieur coloré de ce triangle idéal dans le demi-plan de Poincaré a
droite.

d) En remarquant que I'arc (BC) a pour équation x? + y? = R? avec y > 0

L'aire A du triangle idéal {ABC} se calcule alors:

azﬂd’;fy f dx IJF fRLz—f_ll at =[Arcsint]ll=(g)—(—g)=n

R? 1-t?

On a donc prouvé que l'aire de tout triangle idéal du disque de Poincaré vaut .

4. Final

Nous avons maintenant un peu de recul pour parler du disque de Poincaré; ce qui s'y passe, ce qu'il faut en penser de facon
générale. Que peut-on globalement en retenir ?

Pour synthétiser, on peut laisser la parole a Poincaré lui-méme:
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«Si I’espace géométrique était un cadre imposé a chacune de nos représentations, considérée individuellement, il serait
impossible de se représenter une image dépouillée de ce cadre, et nous ne pourrions rien changer a notre géométrie.

Mais il n’en est pas ainsi, la géométrie n’est que le résumé des lois suivant lesquelles se succeédent ces images. Rien
n’empéche alors d’imaginer une série de représentations, de tout point semblables a nos représentations ordinaires, mais se
succédant d’apres des lois différentes de celles auxquelles nous sommes accoutumés.

...Supposons, par exemple, un monde renfermé dans une grande sphére et soumis aux lois suivantes :

La température n’y est pas uniforme ; elle est maxima au centre, et elle diminue a mesure qu’on s’en €loigne, pour se réduire
au zéro absolu quand on atteint la sphere ot ce monde est renfermé.

Je précise davantage la loi suivant laquelle varie cette température. Soit R le rayon de la sphere limite ; soit r la distance du
point considéré au centre de cette sphere. La température absolue sera proportionnelle a R? - 2.

Je supposerai de plus que, dans ce monde, tous les corps aient méme coefficient de dilatation, de telle fagon que la longueur
d’une régle quelconque soit proportionnelle a sa température absolue.

Je supposerai enfin qu’un objet transporté d’un point a un autre, dont la température est différente, se met immédiatement en
équilibre calorifique avec son nouveau milieu.

Rien dans ces hypothéses n’est contradictoire ou inimaginable.

Un objet mobile deviendra alors de plus en plus petit @ mesure qu’on se rapprochera de la sphére limite.

Observons d’abord que, si ce monde est limité au point de vue de notre géométrie habituelle, il paraitra infini a ses habitants.

Quand ceux-ci, en effet, veulent se rapprocher de la sphére limite, ils se refroidissent et deviennent de plus en plus petits. Les
pas qu’ils font sont donc aussi de plus en plus petits, de sorte qu’ils ne peuvent jamais atteindre la sphére limite.

Si, pour nous, la géométrie n’est que 1’¢tude des lois suivant lesquelles se meuvent les solides invariables, pour ces étres
imaginaires, ce sera I’étude des lois suivant lesquelles se meuvent les solides déformés par ces différences de température dont
je viens de parler.

Sans doute, dans notre monde, les solides naturels éprouvent également des variations de forme et de volume dues a
I’échauffement ou au refroidissement. Mais nous négligeons ces variations en jetant les fondements de la géométrie ; car,
outre qu’elles sont tres faibles, elles sont irréguliéres et nous paraissent par conséquent accidentelles.

Dans ce monde hypothétique, il n’en serait plus de méme, et ces variations suivraient des lois réguliéres et trés simples.

D’autre part, les diverses piéces solides dont se composerait le corps de ses habitants, subiraient les mémes variations de
forme et volume.

Je ferai encore une autre hypothése; je supposerai que la lumiere traverse des milieux diversement réfringents et de telle sorte
que I’indice de réfraction soit inversement proportionnel a R? - r2 Il est aisé de voir que, dans ces conditions, les rayons
lumineux ne seraient pas rectilignes, mais circulaires.

... Ainsi des étres comme nous, dont I’éducation se ferait dans un pareil monde, n’auraient pas la méme géométrie que nous.»

Henri Poincaré, LA SCIENCE ET L’HYPOTHESE , 1902

Henri Poincare, vers 35 ans.

Henri Poincaré est un mathématicien, physicien, philosophe et ingénieur
frangais né le 29 avril 1854 a Nancy et mort le 17 juillet 1912 a Paris.
Peut-étre le plus grand mathématicien francais de l'histoire, il est aussi
considéré par beaucoup d’initiés comme le véritable inventeur de la théorie
de la relativité restreinte (voir HLADIK).
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