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Transformation de Laplace 

Ibrahim Keita 

 

L’étude de la transformation de Laplace a pour but d’introduire une nouvelle méthode de résolution des 

équations différentielles. Cette méthode est demandée explicitement dans certaines questions ; ce qui rend 

l’étude de ce chapitre indispensable. 

I. DEFINITIONS  

1. Fonctions causales  

a) La fonction  f  définie sur  est causale si  f(t)=0  pour t<0. 

Exemple : f(t)=0  si  t < 0   et   f(t)=2t  si  t ≥ 0  . 

b) La fonction causale la plus utilisée est la fonction échelon unité, notée U  et définie par : 
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 2. Exemple de signal rencontré en physique 
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( pour tracer la courbe, écrire l’expression de la fonction dans chacun des intervalles ]-∞  ;  0[, [0  ;  1[, [1  ;  

2[  et  [2 ; +∞[ ) . 

3. Intégrale généralisée  

Soit  a  un réel donné et   f  une fonction intégrable sur  [a ; +∞[ . Si  l’intégrale  
x

a
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4. Transformée de Laplace d’une fonction causale f  

 On appelle transformée de Laplace de la fonction causale  f ,  la fonction   L(f(t))  définie par 
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II. TRANSFORMEES DE LAPLACE CLASSIQUES 

Comme pour le calcul des dérivées, il y a des TL (transformée de Laplace) de base qui nous servirons à faire les 

TL demandées. Ces TL figurent aussi dans le Formulaire officiel du BTS. 

1. Fonction échelon unité   

La transformée de Laplace de  U  est : 

p
tUL

1
))((   

car : 
pppp

pt

dtedtetUL

p

e
t

t

ptpt 11
0

10
.1))((

0

00


























 





















   . 

2. Fonction puissance   

La transformée de Laplace de   t
n 
U(t)   est   

1
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3. Fonctions exponentielles   

La transformée de Laplace de  e
-at 

U(t)   est   
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4. Fonctions trigonométriques   

La transformée de Laplace de   cost.U(t)   est   
22 p

p
      et celle de      sint.U(t)   est   
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III. PROPRIETES DE LA TRANSFORMATION DE LAPLACE 

La transformée de Laplace de  f(t) sera notée F(p) , celle de g(t) sera G(p) , etc.  

1. Linéarité   

Si on a les transformées de Laplace de  f  et de  g, alors la transformée de  λ f + μ g  est  λ F + μ G  .     

2. Fonctions composées et produits   
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Exemple : Déterminer la TL de cos3t e
-2t

 U(t)  . 

Ici on prend la deuxième formule avec a=2 ; f(t)=cos3t est transformé en  
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 , mais pris au point  p+2 

on doit remplacer  p  par  p+2 .  Ce qui donne finalement   
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3. Fonctions dérivées   

  )0())()('(  fppFtUtfL          et          )0(')0())()(''( 2   ffppFptUtfL  . 

Notons qu’il existe d’autres TL données en cas de besoin dans le formulaire du BTS. 

IV. APPLICATION : RESOLUTION D’EQUATION DIFFERENTIELLE  

Supposons que nous ayons à résoudre l’équation différentielle 

(E)  x’’(t) + 4 x(t) = cos 3t     avec  x(t) nulle pour  t<0 , et vérifiant   x(0
+
) = 1  ,   x’(0

+
) = 0 . 

En prenant la TL de chaque membre de l’équation, on obtient : 

L(x’’(t)) + 4L( x(t)) =L( cos 3t) 
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En remarquant que  
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Puisque la TL de  cost  est 
22 p

p
 , il apparaît que la fonction x(t) (l’original de X(p)) est : 
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