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Modélisation géométrique 

Ibrahim Keita 

Les courbes géométriques sont utilisées dans l’industrie (aéronautique, automobile, navale,…) pour modéliser des formes. 

I. COURBE DE BEZIER 

1. Polynôme de Bernstein
  
 

 Pour un entier naturel n donné, les (n+1) polynômes de Bernstein, de degré  n , sont définis par    
inii

nni ttCtB  )1()(, . 

Exemple. Pour n=3, les 4 polynômes de Bernstein sont 
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2. Courbe de Bézier 

▪ La courbe de Bézier  associée à (n+1) points de définition P0 , P1 , … , Pn  (ou aux (n+1) vecteurs 0V  , 1V  , … , Vn ) a pour 

représentation paramétrique          i
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▪ Les (n+1) points de définition Pi  vérifient   00 VOP    et   iii VPP 1    pour  1 ≤ i ≤ n . 

▪  a pour extrémités  P0  et  Pn ,   110 VPP   est un vecteur directeur de la tangente en  P0  et  nnn VPP 1  est un vecteur 

directeur de la tangente en  Pn . 

Exemple. Construire la courbe de Bézier  associée aux 4 points de définition P0(0 ;0) , P1(1 ;0) , P2(1 ;1) et P3(0 ;1) . 
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L’étude de cette courbe pour t  [0  ;  1], donne le tableau de variations et la représentation suivants : 
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3.Barycentres 

La courbe de Bézier  est aussi l’ensemble des barycentres des (n+1) points de définition  Pi  affectés des masses Bi,n(t) quand t 

décrit le segment [0  ;  1]. 
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II. COURBE B-SPLINE 

 Etant donnés n points de définition Pi on veut construire une courbe composée de deux courbes parfaitement reliées. 

Nous exposerons le problème ici dans le cas de quatre points :  P0 ,  P1 ,  P2  et  P3 . 

Polynôme de Riesenfeld
  
 

 Les trois polynômes de Riesenfeld , de degré  2 , sont définis par 




 




i

j

j

i
jj

jit
tR

2

0 )!3(!

)²2(
)1(3)( . 

Exemple. Pour n=3, les 4 polynômes de Riesenfeld sont 

R0(t) = 3.((t+2)
2
/(1.6)-(t+1)²/(1.2)+t²/(2.1)) = 3((t²+4t+4)/6-(t²+2t+1)/2+t²/2) = t²/2-t+1/2  . De la même façon (à faire), on a   

R1(t) = -t
2
+t+1/2   et   R2(t) = t²/2  . 

2. Courbe B-spline 

La courbe B-spline  associée à  4 points de définition  P0 ,  P1 ,  P2  et  P3  est l’ensemble des deux arcs de courbe  C1  et  C2 

définis par : 

C1 = {M1(t),   t [0  ;  1]}  tel que  2211001 )()()()( OPtROPtROPtRtOM   

C2 = {M2(t),   t [0  ;  1]}  tel que  3221102 )()()()( OPtROPtROPtRtOM  . 

Exemple. Construire la courbe de B-spline associée aux 4 points de définition P0(-1;2) , P1(0;-3) , P2(3;2) et P3(-3;4) . 

A l’aide des polynômes de Riesenfeld calculés avant, on détermine les vecteurs )(1 tOM  et  )(2 tOM  donc les équations des 

courbes C1  et C2 . On trouve ainsi   C1
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L’étude de ces courbes pour t  [0  ;  1], donne le tableau de variations de C1 (à faire pour C2 ) et la représentation suivants : 
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