
LN1 

 

 

 Fonctions ln x et exp x 

Ibrahim Keita 

  

I. PRIMITIVES 

1. Définition  

a) La fonction  F  est une primitive de la fonction  f  si   F’(x) = f(x)  pour tout  x  sur un intervalle  I  donné.  

b) Si  F  est une primitive de  f , alors  F+k  (avec k constante) est aussi une primitive de  f.  

2. Principales primitives  

Quelques fonctions primitives usuelles sont : 
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3. Propriétés  

Si  F  est une primitive de  f ,  G  une primitive de g ,  k  une constante,  on a :  

▪ une primitive de   kf   est   kF ,  

▪ une primitive de   f+g   est   F+G . 

II. FONCTION  ln x 

1. Définition 

 La fonction logarithme népérien  ln x  est l’unique primitive de la fonction 
x

1
 définie quand  x 0 et qui s’annule 

pour x 1. 
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2. Propriétés  

a) ln a = ln b  équivaut à dire que  a = b . 

b)   baba lnlnln      avec    a   et   b  positifs.  

c) La fonction  ln  vérifie:   ba
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Exemple. )1²ln()(  xxxf  pour tout x ; déterminer la fonction dérivée de f . 
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     (la puissance l'emporte sur le log). 

3. Etude de la fonction  ln x  
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 D'où le tableau de variations et la courbe de la fonction ln: 
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  Avec:   f(1)=0   ,   f(e)=1   ,   e ≈ 2.718    et 

f '(1)=1/1=1 
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III. FONCTION  exp x 

1. Définition 

a) La fonction exponentielle (de base e) exp x ou xe  est la fonction réciproque de xln   et est définie pour tout x . 

 xy ln        équivaut à     yex     (pour x>0) ;    xe est définie pour tout  x   et     xx ee '  . 

b) xee xx  lnln      (pour x>0). 

2. Propriétés  

a) baba eee  .  

b) La fonction  xe  vérifie:     xnnx ee   ,   x
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c) Pour  0n ,   
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3. Etude de la fonction  exp x   
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b) Pour tout  x ,    0'  xx ee . 

 D'où le tableau de variations et la courbe de la fonction exp: 
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  Avec:   f(1)=e ≈ 2.718    et     f '(0)=e
0
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